Seminar: Seminare.EIM: Deep Reinforcement Learning (DSBS, CSMS, IIWMS, TMBS, IMPICS) - Details

Seminar: Seminare.EIM: Deep Reinforcement Learning (DSBS, CSMS, IIWMS, TMBS, IMPICS) - Details

Sie sind nicht in Stud.IP angemeldet.

Allgemeine Informationen

Veranstaltungsname Seminar: Seminare.EIM: Deep Reinforcement Learning (DSBS, CSMS, IIWMS, TMBS, IMPICS)
Semester SoSe 24
Aktuelle Anzahl der Teilnehmenden 9
maximale Teilnehmendenanzahl 12
Heimat-Einrichtung Elektrotechnik, Informatik und Mathematik
Veranstaltungstyp Seminar in der Kategorie Lehre
Erster Termin Dienstag, 09.04.2024 14:00 - 15:30
Teilnehmende The seminar is aimed at all Bachelor- and Master- level students in the Informatik and the Techno-Mathematik courses. A maximum of 12 students can participate in the seminar.
Voraussetzungen As a prerequisite, this seminar will assume familiarity with probability, linear algebra, and programming in Python.
Lernorganisation The seminar is divided into six blocks (following an introductory session), each lasting two weeks. Every block consists of the following components:

* Week 1: Preparation of a presentation using prescribed sources (book chapters, video lectures, scientific articles).

* Week 2: Presentations by 2 participants, each lasting 25 minutes based on a topic assigned to each participant in the first session of the seminar.

Räume und Zeiten

Keine Raumangabe
Dienstag: 14:00 - 15:30, wöchentlich

Kommentar/Beschreibung

This course is a basic introduction to Deep Reinforcement Learning (RL). In RL, an agent learns to make sequential decisions by interacting with an environment to maximize some notion of reward. Deep RL combines RL and deep learning, in that neural networks are used to represent the agent's value functions or decision making policies, enabling the handling of complex input spaces such as images or sensor readings. This approach has led to significant advancements in tackling problems such as playing video games, robotics control, and autonomous driving. As a result, expertise in RL constitutes a significant advantage in the industrial job market. By the end of the seminar, it is expected that students will gain proficiency in designing their own RL algorithms, enabling them to apply it to different areas such as robotics, recommendation systems, gaming, etc. to name a few, and also comprehend current literature in the field.

Anmelderegeln

Diese Veranstaltung gehört zum Anmeldeset "Seminare.EIM: Restplätze SoSe24".
Folgende Regeln gelten für die Anmeldung:
  • Die Anmeldung ist möglich von 03.04.2024, 09:00 bis 12.04.2024, 09:00.
  • Es wird eine festgelegte Anzahl von Plätzen in den Veranstaltungen verteilt.
    Die Plätze werden in der Reihenfolge der Anmeldung vergeben.
  • Die Anmeldung zu maximal 3 Veranstaltungen des Anmeldesets ist erlaubt.
Veranstaltungszuordnung: